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Artificial Intelligence
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● Reasoning and problem-solving: symbolic AI, expert systems

● Knowledge representation: knowledge graphs, content models, concept maps 

● Planning and decision-making: multi-agent systems 

● Machine Learning: deep knowledge tracing, predictive analytics

● Natural language processing: word embeddings, transformer, generative pre-trained transformers (GPT)

● Machine perception: text to speech, speech to text, object recognition, hand-writing detection

● Affective computing: sentiment analysis, emotion detection

Long-term goal: Artificial General Intelligence as the ability to complete any task 
performed by a human on an at least equal level



AI in Education vs. Learning Theories
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Constructivist Learning

● Constructivism (Piaget, 1950; Vygotsky, 1978) – Learning through cognitive processes & social interactions.
● Sociocultural Perspective – Social and cultural factors shape learning.
● AI Integration – Supports active, collaborative, and contextual learning.
● Applications – AI tutors, collaborative platforms, and chatbots enhance critical thinking and problem-solving (Ritter et al., 2019).

Self-Regulated Learning & Metacognition

● Self-Regulated Learning (Zimmerman, 1989) – Learners actively control strategies, motivation, and cognition.
● Metacognition (Flavell, 1979) – Awareness and regulation of cognitive processes.
● AI Support – Personalized feedback, scaffolding, and reflection enhance planning, monitoring, and evaluation.

Zone of Proximal Development (Vygotsky, 1978)

● ZPD  – The gap between independent ability and supported learning.
● AI as a Scaffolding Tool – Provides personalized support tailored to learners’ ZPD.
● Adaptive Learning – AI analyzes performance to adjust challenge and support dynamically.

…



Fundamentals
for the use of LLM in Education
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LLM Transform Text
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Technical Usecases
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LLM Use Cases
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Accessing LLM
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Why Open Source is Essential for AI in Education
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Quality

● Research must be transparent and reproducible.
● Frequent updates (model/API) may invalidate previous research results.

Legal Considerations

● Sensitive information could be unintentionally shared through prompts.
● No fully satisfactory technical solution currently exists for commercial applications.

Technical Autonomy

● Full access to model parameters, logs, source code, and prompt interactions.
● Independence from licensing restrictions, allowing flexibility for specific use cases.



Performance of Large Language Models
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Criteria: accuracy, throughput, system requirements, application domain

(Zesch et al. 2024)
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FLEXI - Flexible LLM Experimental Infrastructure
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- Budget – Moderate initial investment costs.
- Know-How – Requires capacity development.
- Effort – Deployment, security, and maintenance 

demand resources.
- Restriction – Certain commercial models may not be 

available.

T. Zesch, M. Hanses, N. Seidel, P. Aggarwal, D. Veiel and C. De Witt, 
"Flexible LLM Experimental Infrastructure (Flexi) – Enabling Experimentation and 
Innovation in Higher Education Through Access to Open LLMs," 2024 21st 
International Conference on Information Technology Based Higher Education and Training 
(ITHET), Paris, France, 2024. http://dx.doi.org/10.1109/ITHET61869.2024.10837635 

+ Privacy  
+ Demand-oriented model selection 
+ Stability and versioning 
+ Reproducability
+ Cost control

http://dx.doi.org/10.1109/ITHET61869.2024.10837635


Prototypes and Empirical Tests
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Are chatbots ready for implementation?
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Are LLMs ready for implementation in higher education?
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Ethical and legal Challenges

- LLM may generate incorrect 
information, which students might 
reproduce in exams without realizing it's 
wrong.

- Overreliance on AI – Students may 
blindly trust AI-generated responses.

- AI-generated content may reflect biases 
present in training data, leading to unfair 
or discriminatory outputs.

- AI-generated content raises concerns 
about authorship—who owns the 
generated knowledge?

Potential Solutions

- Accepting imperfection
- Human in the loop – Educators and experts 

provide quality control and oversight.
- AI in the loop – Implementing self-evaluation, 

self-correction, and multi-agent collaboration

- AI literacy training

- AI literacy training
- using diverse LLM

- train public domain models
- …



CATALPA REALLABOR
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Example 1
Reading Comprehension
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Motivation for Implementation of Reading Comprehension
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Goal 1: Motivate and support students in engaging more deeply with text-based study materials

● Encourage self-regulated reading
● Improve reading comprehension of complex academic texts
● Promote inclusion for learners with different language backgrounds

Goal 2: Support educators in creating digital study materials

● Ensure low effort (few clicks, minimal time) while maintaining high content quality
● Educators control the source material and decide on the acceptance of AI-generated results
● Facilitate human-AI collaboration directly within the learning platform



How it works
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1. Paste your study into Moodle/Longpage 2. Select text section/part for question generation



How it works
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3. Check generated question and answer options 4. Revise parts manually or let them re-generate



How it works
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5. Release ready-made question for learners



Empirical Results: Creation and Generation of Reading Comprehension Questions
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AI-supported task creation 

- Increased task production – More tasks created in less time

- Reduced editing effort – Fewer revisions needed

- Faster workflow – Less time required per task

- Improved readability – Higher text clarity and coherence

- Higher perceived usefulness – More positive user feedback

See Moodle plugin: https://github.com/CATALPAresearch/mod_longpage 

https://github.com/CATALPAresearch/mod_longpage


Lehrende gesucht
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Sie benötigen:

- 2 Fach- oder Studientexte aus 
Ihrem Fachbereich

- ca. 30 Minuten Zeit

https://e.feu.de/longpage

https://e.feu.de/longpage


Example 2
Document Chat
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Motivation for Document Chats
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Goal 1: Enable subject-specific queries about learning material

● Use information beyond the LLM training data. 
● Align LLM usage with course material and learning goals
● Focus learning through restriction of the search space

Goal 2: Increase accuracy of LLM responses

● LLM halucinate when queried about topics outside of the training data.
● LLM responses are verifiable by reference to the document.
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Moodle Setup for Document Chats
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Moodle Openchat User Interface
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Ongoing Empirical Study: Using RAG for Textbooks
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Material: Course text “Gestaltung kooperativer Systeme” 
- Textbook, 7 chapters, 349 pages
- In use since 2017 in an M.Sc. Computer Science module.

Benchmark: Q/A pairs created by an expert
- ~100 pairs per chapter, full coverage of the text
- Blooms taxonomy levels: knowledge, understanding, application

Setup for Retrieval Augment Generation (RAG):
- Chunking: method, chunk size, chunk overlap
- Embedding Model: SentenceTransformer
- RAG techniques: Naive RAG, HyDE, LLM Rerank
- Vector store: pgvector, Qdrant 
- Retriever: ColBert/ColPali



Example 2 
Feedback for Self-Assessments
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Motivation for Self-Assessment Feedback
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Goal 1: Self-Assessments as a scalable assessment format 

● Scalable learning support
● Flexible submission formats (text, file upload, offline, …)
● Fine-grained assessment criteria for self-assessment of solutions
● Immediate feedback

Goal 2: Personalized feedback

● Consider student’s solution, student’s self-rating criteria, sample solution
● Encourage iterative revision of the submitted solution

(Henze, Kasakowski, & Haake)



Feedback for critical self-evaluation of task solution
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Empirical Study: Feedback for Self-Assessment
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Models: GPT-3.5/4.0 turbo, Llama 3, Mixtral AI 8x7b/22b

Metrics: readability, semantic similarity, sentiment analysis, 

Material: 40 tasks incl. student solutions and sample solutions

Procedure: 
- Generate 600 feedbacks (40 pairs x 5 models x 3 feedback lengths)
- Rating of two experts

- quality: correctness, accuracy, relevance
- language: appropriateness, coherence
- preference between AI feedback and static feedback



Empirical Results: Feedback for Self-Assessment

34

AI-Generated Feedback: 

- More expressive – AI feedback contains more emotions compared to 
static feedback.

- High language quality – Well-structured and fluent responses.

- Limited similarity to sample solutions – Less alignment with predefined 
answers, no direct hints on the correct solution

- 60% correctness – Feedback is often too general, lacks specificity, or 
uses artificial language, reducing motivation.

- Experts found 40% of AI-generated feedback superior to static feedback.



Example 4
AI-Agengt conducting interviews about 
Self-Regulated Learning Strategies
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Motivation for AI-Interview Agent for Learning Strategies and Self-Regulation
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Goal 1: Foster reflection about learning strategies and self-regulation

● Encourage reflection on the selection and frequency of learning strategy use.
● Provide suggestions for improvement
● Integration in Discord and Moodle

Goal 2: Measure competencies about self-regulated learning

● Proven interview instrument: 
○ B. J. Zimmerman and M. M. Pons, “Development of a Structured Interview for Assessing Student Use of 

Self-Regulated Learning Strategies,” American Educational Research Journal, vol. 23, no. 4, pp. 614–628, 
Jan. 1986, doi: 10.3102/00028312023004614.

● Alternative to questionnaires (MSLQ, LASSI, LIST-K) and tracedata
● Flexible but at the same time persistent interview questioning



Dialogue Model for Conducting Interviews
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(Radovic, Wetchy, & Seidel, in print)



Empirical Results from a Qualitative User Study 
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- All participants (N=11) successfully completed the interview

- 76% of the questions were correctly answered at the first attempt

- Appropriate tone (74%), sometimes overly positive

- Rare hallucinations, e.g. suggesting the “5-second rule” for procrastination

- 80% success rate in classifying learning strategies to match human coding

- Good usability ratings, although slow response times (~23s)

- Feedback on the usefulness of suggestions was mixed; some found them helpful, others 
perceived them as generic and sought more creative or in-depth advice



Example 5
Simulation of Oral Exams
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Motivation for Simulating Oral Exams
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Goal 1: Enable training and preparation for oral exam situations

● Exploit strenghts over over written exams 
● Reduce exam anxiety

Goal 2: Modeling of the examination procedure 

● Support different types of question including clarification questions
● Time management
● Provide a qualitative feedback

(Seidel & Hammesfahr, 2024)



Simulation of Oral Exams
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- Speech dialogues only
- Dynamic question selection based on 

previous answers
- Final feedback after completion
- Status: Technical Proof of Concept

(Seidel & Hammesfahr, 2024)



Dialogue Model for Oral Examinations
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(Seidel & Hammesfahr, 2024)



Example 6
Multi-Agent Learning Assistant
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Motivation for Multi-Agent Learning Assistant
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Goal 1: Emulate activities of private teachers in online education

● Individual agents feature isolated skills and tasks of educators 
● Support students with content-related, organizational and self-regulation tasks
● Multi-Agent Collaboration

Goal 2: Create an appropriate user interface for interactions between student and agent

● Support text-chat and audio chat
● Augment communication with Learning Analytics Dashboards

coming soon



Conclusion
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Lessons learned 
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Quality

- Blind trust in AI accuracy is inappropriate

- Evaluation using custom benchmarks

- Open-Source matters

Integration

- User-centered design approach

- AI must be integrated where learning happens

- Participatory design – engage stakeholders early and iteratively 

- Focus on enhancing existing effective didactic scenarios

- Expand Human-AI collaboration
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Learning Theories for AI
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Dialogue Model for Conducting Interviews
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(Radovic, Wetchy, & Seidel, in print)


